

19th IAEA Fusion Energy Conference 14 - 19 October 2002, Lyon, France

A Tokamak with Nearly Uniform Coil Stress Based on Virial Theorem

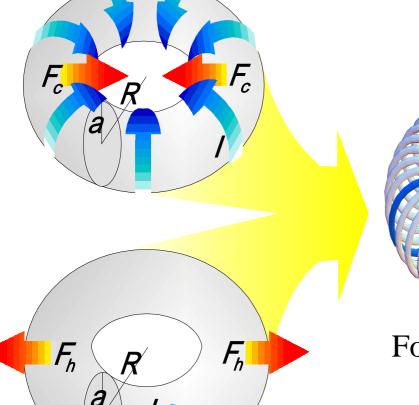
H.Tsutsui,

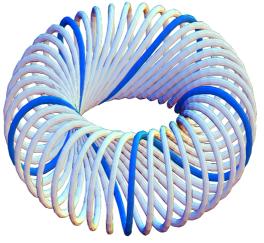
K.Nayakama, T. Ito, H. Ajikawa,

S.Nomura, S.Tsuji-Iio, R.Shimada

Research Laboratory for Nuclear Reactors, **Tokyo Institute of Technology**

Introduction


- We studied the tokamak with the Force-Balanced Coils which are hybrid helical coils of OH and TF coils and reduced the electromagnetic force.
- The virial theorem, which is derived only form the equilibrium, shows that the tension is required to hold the magnetic energy.
- The virial theorem in magnet systems is derived by the replacement of plasma pressure to stress.
- In this work, we extend the FBC by the virial theorem, and obtain the minimal stress condition.
- The new compact tokamak based on the virial theorem is designed and constructed.



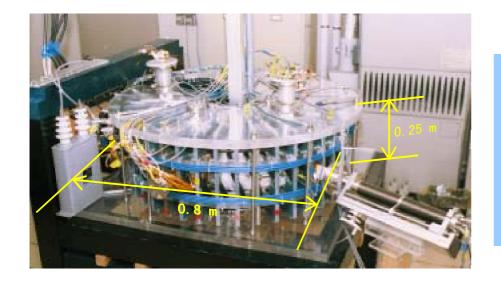
Principle of Force-Balanced Coil

Centering Force by Poloidal Current

Force-Balanced Coil

Centering force is much reduced, but stress distribution is not investigated.

Hoop Force by Toroidal Current


Background

TODOROKI-I

√alue
1 T
10kA
4ms

- The error field by FBC made the control of plasma difficult.
- The force of toroidal direction was reduced in FBC.
 Is it held in stress?

- Reduction Error Field
- Estimation of Stress
- Application of Virial Theorem

Virial Theorem

$$\mathbf{j} \times \mathbf{B} + \nabla \cdot \mathbf{S} = 0$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$$

$$\nabla \cdot \boldsymbol{B} = 0$$

j: current density

B: magnetic field

S: stress tensor

$$\nabla \cdot (\mathsf{T} + \mathsf{S}) = 0$$

$$T = \frac{1}{\mu_0} \left(BB - \frac{B^2}{2} I \right)$$

T: Maxwell stress tensor

$$\int \operatorname{Tr}(\mathsf{T} + \mathsf{S}) \, \mathrm{d}V = 0$$

S: stress tensor

Equilibrium Eq.
$$\int \sum_{i=1}^{3} \sigma_{i} dV = \int \frac{B^{2}}{2\mu_{0}} dV \equiv U_{M} > 0$$

 σ_i : principal stress

$$\widetilde{\sigma} \equiv \frac{V_{\Omega}}{U_{\mathrm{M}}} \sigma$$

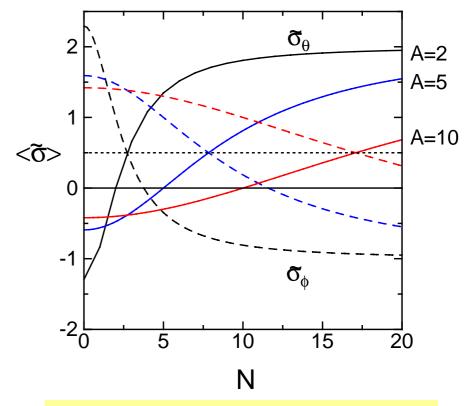
$$\langle \sigma \rangle \equiv \frac{\int \sigma \, \mathrm{d}V}{V_{\mathrm{M}}}$$

$$\left\langle \sum_{i=1}^{3} \widetilde{\sigma}_{i} \right\rangle = 1$$

- Positive stress (tension) is required to hold the field.
- Uniform tension is favorable.
- Theoretical limit is determined.

$$\widetilde{\sigma}_1 = \widetilde{\sigma}_2 = \widetilde{\sigma}_3 = \frac{1}{3}$$

Application to Helical Coil


$$\langle \tilde{\sigma}_{\theta} \rangle = \frac{N^2 - A^2}{\frac{N^2}{2} + A^2 \log 8A - 2A^2}$$

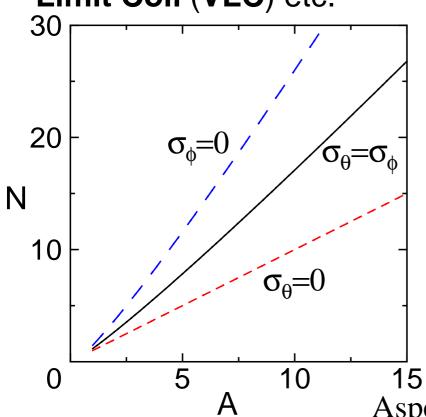
$$\langle \tilde{\sigma}_{\phi} \rangle = \frac{A^2 \log 8A - A^2 - \frac{N^2}{2}}{\frac{N^2}{2} + A^2 \log 8A - 2A^2}$$

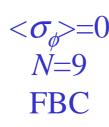
$$\langle \tilde{\sigma}_{\theta} \rangle + \langle \tilde{\sigma}_{\phi} \rangle = 1$$

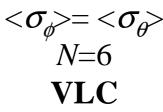
$$N \equiv \frac{I_{\theta}}{I_{\phi}} : \text{Pitch of Coil}$$

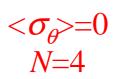
$$A : \text{Aspect Ratio}$$

$$\langle \widetilde{\sigma}_{\theta} \rangle = \langle \widetilde{\sigma}_{\phi} \rangle = \frac{1}{2}$$
 is optimal in energy.

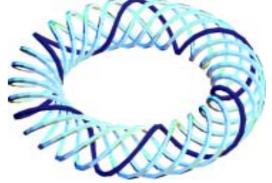

Virial-Limit Condition

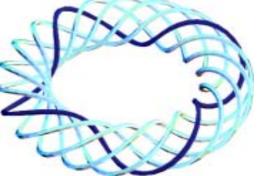


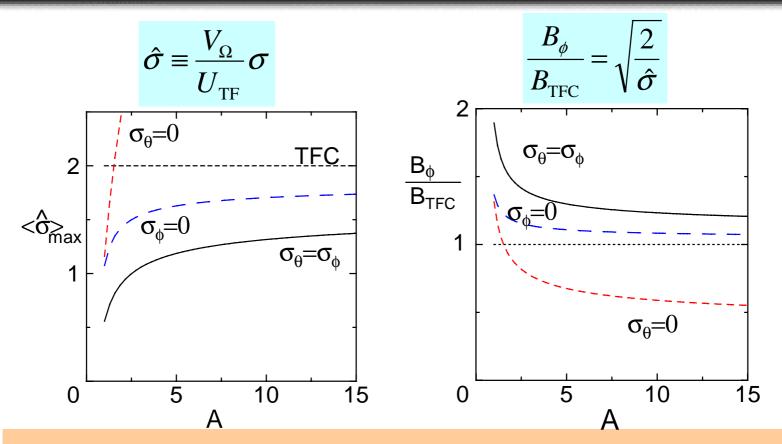

Shape of Coils



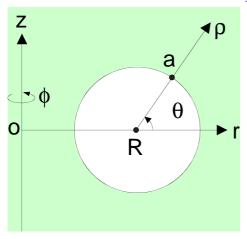
Relations of pitch number and aspect ratio of Virial-Limit Coil (VLC) etc.







Comparison of Toroidal Field


 In the case of low aspect ratio, 1.5 times stronger magnetic field is created compared with traditional TF coil.

Toroidal Effect

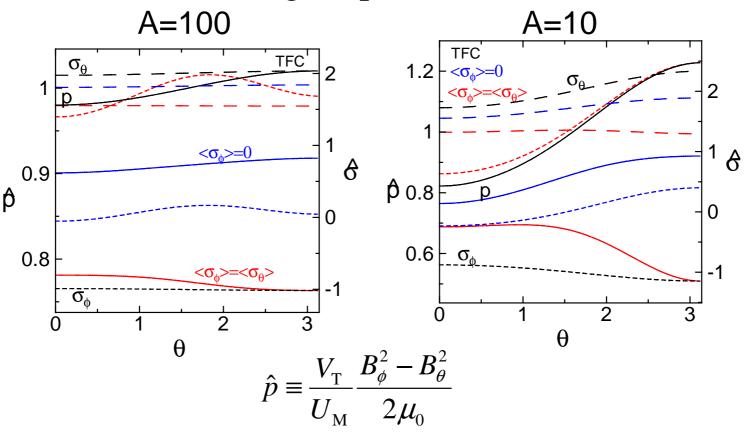
Equilibrium of Magnetic Pressure and Stress

$$p \equiv \frac{B_{\phi}^2 - B_{\theta}^2}{2\mu_0}$$

$$u(r) \equiv a \int_{R}^{r} r' \, p(r') \mathrm{d}r'$$

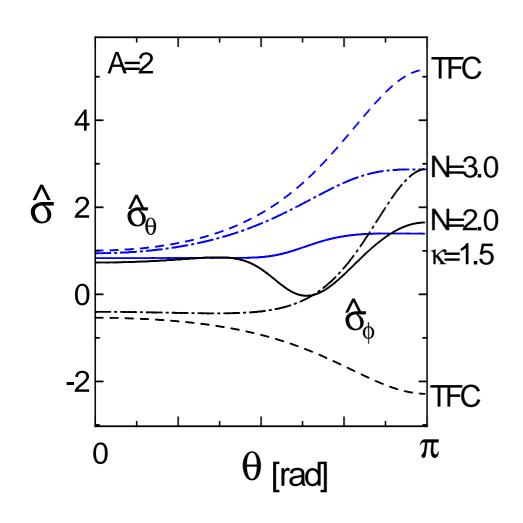
$$T_{\theta} = \frac{u}{(r-R)r}$$

$$T_{\phi} = \frac{arp}{r-R} - \frac{u}{(r-R)^{2}}$$


 Distribution of stress in the toroidal shell with circular cross section is derived analytically by use of magnetic pressure.

Distribution of Stress

(large aspect ratio)


- When *A*=100, distribution of stress is flat.
- There is no advantage of helical winding.

Distribution of Stress

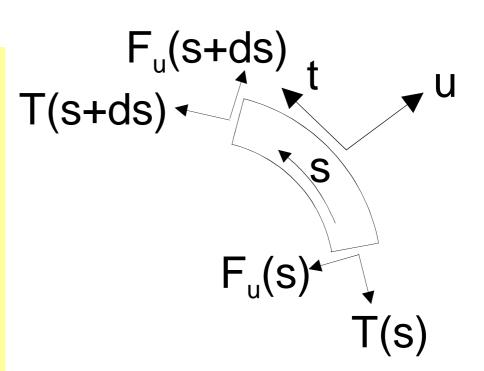
(low aspect ratio)

- When A<10, distribution of stress is important.
- Assumption of large aspect ratio is not held.
- Optimal distribution is achieved to minimize the stress at θ=π.

Uniaxial Stress Model

Equilibrium of Electromagnetic Force and Stress

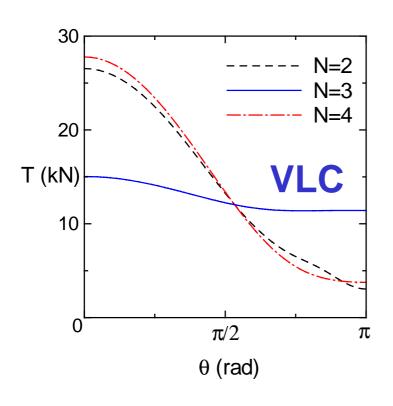
$$\frac{dT}{ds} + \frac{F_u}{R} = 0$$

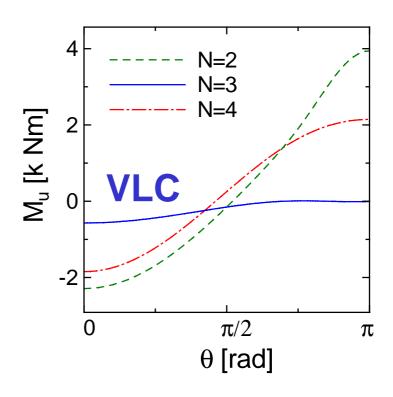

$$\frac{dF_u}{ds} + \frac{T}{R} + f_u = 0$$

T: tension, F: sharing force

R: curvatur radius,

f: electromagnetic force


s: coordinate by length of coil

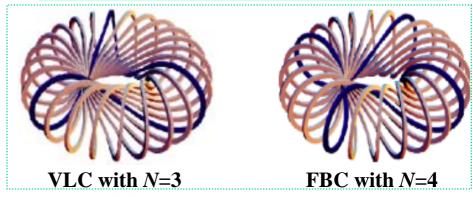


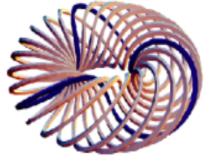
Tension and Bending Moment

- The tension of coil with pitch=3 is reduced and its distribution is flat.
- In the fat cable, the bending stress (proportional to bending moment) is important.
- The distribution of bending moment in the coil with pitch 3 is flat.

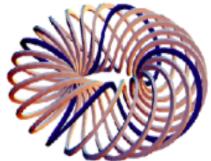
Stress Analysis of VLC

Why FEM analysis?


3D analysis is required because the virial-limit condition is obtained from the 2D shell model.

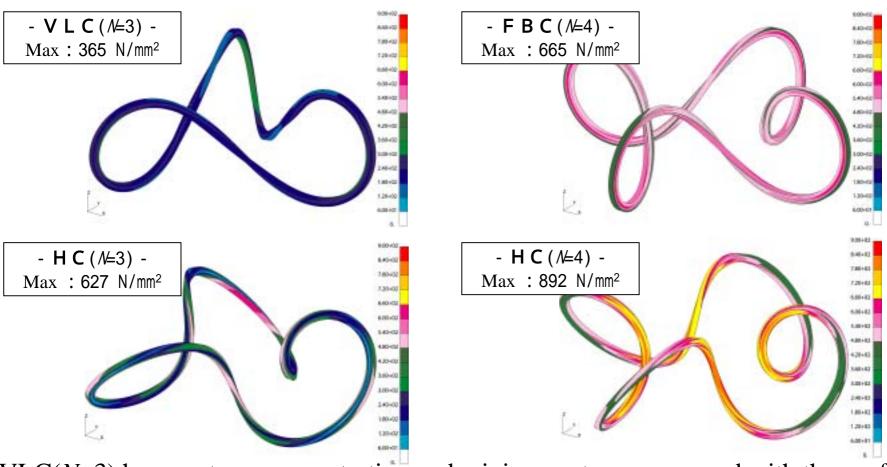

Conditions in FEM Analysis

- 3D-Model with Electromagnetic Force
- Structure Analysis by FEM (NASTRAN)Stress


<u>Parameters</u>	Value
Major radius	0.30 m
Minor radius	0.14 m
Aspect ratio	2.14
Pitch number <i>N</i>	24 turns
Coil current	96 kA/1 pole
Toroidal field	1.5 T
Cross section	380 mm^2
Young's modulus	$1.26 \times 10^5 \text{ N/mm}^2$
<u>Poisson's ratio</u>	0.33

Current layer coincide with magnetic surface.

HC with N=4


Models in Analysis

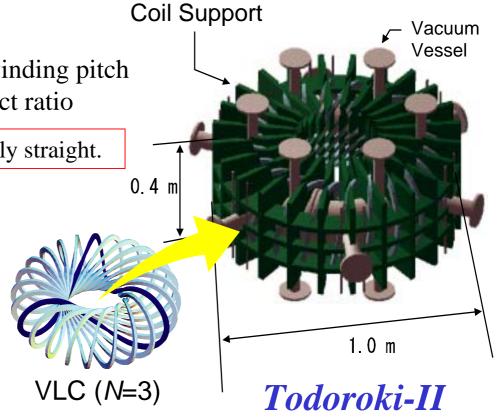
Stress Analysis of VLC

Distributions of von Mises Stress

VLC(N=3) has no stress concentration and minimum stress compared with those of other coils.

VLC realize both nearly uniform distribution of stress and minimum stress in 3D model.

Outline of VLC Tokamak


Outline of Design

Easy winding of coil Large Plasma Volume integer winding pitch low aspect ratio

Coil orbit between their supports is nearly straight.

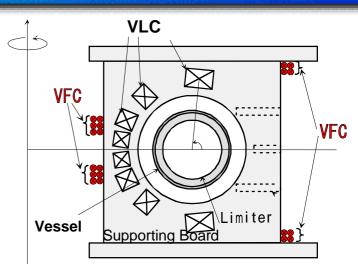
Parameters of Tokamak

<u>Parameter</u>	<u>Value</u>
Major radius(coil)	0.30 m
Minor radius(coil)	0.14 m
Aspect ratio	2.14
Pitch number	3
Pole number	8
inductance	1.3 mH
Major radius(vessel)	0.30 m
Minor radius(vessel)	0.08 m
Toroidal field	1.55 T
Minor radius(plasma)	0.07 m
Plasma current	40.0 kA

Materials

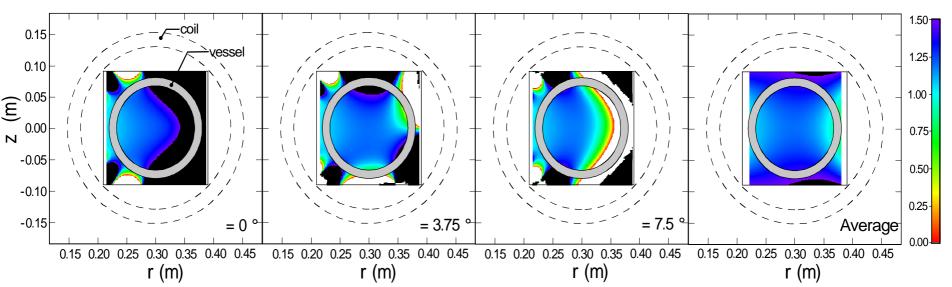
Coil: h	igh-tension Kevlar
cross section	n of copper 12.72 mm ²
Vacuum Vessel:	SUS304
Coil Support:	GFRP (thickness 20 mm

Vertical Field



How to design Vertical Field Coil (VFC) Controllability

minimization of mutual inductances to VLC.


Positional Instability

n-index: n (stable condition: 0<n<1.5)

Positions of VFC on the cross section

n-index

Stable in almost all region in the vacuum vessel

Power Supply and Its Operation

Power Supply

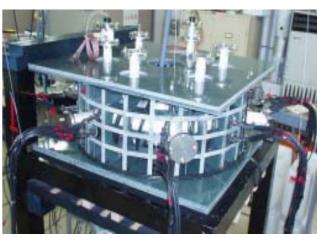
Capacitor x 8	Capacitance :0.5 mF
	Max Voltage:12.5 kV
Inductance of VLC	1.3 mH

• Discharge period: about 10 msec

Second Ignitron Second Ignitron Second Ignitron

Capacitors

Operation

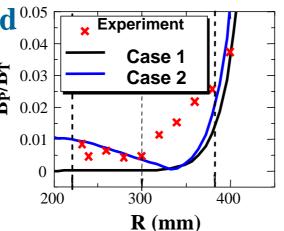

In the initial stage, there is no toroidal field because VLC is a hybrid coil of CS and TF coil.

First: Toroidal Field Second: Loop Voltage

Second **VLC** current I_{pole} (kA) 20 0.5 $\mathsf{B}\phi$ (\mathbf{T}) 0.25 100 V_{loop} 50 0 20 Plasma current(kA) 10 -2 Time (msec)

Todoroki-II

Breakdown Condition



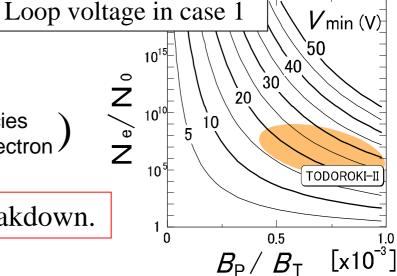
Normalized Poloidal Field 0.05

$$B_P/B_T = \sqrt{B_R^2 + B_Z^2}/B_T$$

Case 1: Ideal Coil Orbit

Case 2: Designed Coil Orbit

Case 1: Ideal VLC Case 2: Designed VLC Case 3: Designed VLC+VFC $B_{\rm P}/B_{\rm P}$ (mm) -50-100250 300 350 400 200 (mm)


Required Loop Voltage in Breakdown

Next equation is obtained from Townsend Avalanche Model.

$$V_{\min} = 2\pi R_0 \frac{eA_2}{A_1} \log(N_e/N_0) \left(\frac{B_p}{B_T}\right) / X_P$$

 $\left(egin{array}{ll} R_0: {
m major\ radius} & A_1,\, A_2: {
m constants\ of\ gas\ species} \ X_{
m p}: {
m limiter\ radius} & n_{
m e}/n_0: {
m multiplication\ factor\ of\ electron} \end{array}
ight)$

Additional vertical field is required for breakdown.

Summary

- The relation of toroidal field and stress is obtained by virial theorem, which shows that the optimal stress configuration is uniform tensile stress.
- When A=2 and $\kappa=2$, a virial-limit coil (**VLC**) makes 1.7 times stronger magnetic field than TF coil.
- VLC winding generates small error fields, and makes room for blanket and other parts in conventional tokamak reactors.
- Nearly uniform stress distribution with **VLC** configuration is obtained from both uniaxial model and FEM analysis.
- A small **VLC** tokamak *Todoroki-II* was constructed and its experiments started.